MEMORANDUM FOR: RECORD

July 12, 2001

SUBJECT: DETERMINATION ON THE SUITABILITY OF PROPOSED DREDGED MATERIAL FROM THE PIERCE COUNTY TERMINAL (PCT) EXPANSION SITE IN THE BLAIR WATERWAY, COMMENCEMENT BAY, TACOMA, WASHINGTON, (PERMIT #2000-2-00765) EVALUATED UNDER SECTION 404 OF THE CLEAN WATER ACT FOR OPEN-WATER DISPOSAL AT THE COMMENCEMENT BAY OPEN WATER SITE.

1. Introduction. The following summary reflects the consensus determination of the Dredged Material Management Program (DMMP) agencies (U.S. Army Corps of Engineers, Washington Departments of Ecology and Natural Resources, and the Environmental Protection Agency) on the suitability of approximately 2.1 million cubic yards (cy) of dredged material from the Port of Tacoma's Pierce County Terminal Expansion Site, in the Blair Waterway in Tacoma, Washington. Disposal of suitable material is planned for the Commencement Bay non-dispersive PSDDA disposal site, potentially in combination with approved upland sites, approved in-water contained sites, and/or approved beneficial use sites. Project depth of -51 ft. MLLW would be provided along with one foot of allowable overdepth (to -52 ft. MLLW) in the project area.

This determination of suitability for open-water disposal is based on the acceptability of the sampling conducted in two events by Port of Tacoma contractors and subcontractors in September and December of 2000 (Table 1). All relevant test data from these sampling events is contained in a report submitted by GeoEngineers dated 7 May 2001, and a supplemental volume of data from AmTest Laboratories. These data were considered sufficient and acceptable for decision making by the Agencies based on best professional judgement.

Table 1. Regulatory Tracking Dates

CAD	Initial	August 31, 2000
SAP received	Supplemental	December 4, 2000
CAB	Initial	September 15, 2000
SAP approved	Supplemental	December 14, 2000
6 11 11 11	Initial	September 19 - 22, 2000
Sampling dates	Supplemental	December 18 - 21, 2000
Data report submitted		May 9, 2001
Recency Determination: Lo	w/LM Concern (5-7 years)	September 2005-2007
DAIS Tracking number		PCTEX-1-B-F-157

Table 2. Project Synopsis

Time of proposed dredging	1 July - 14 March of 2001-2002, 2002-2003, and 2003-2004
Proposed disposal sites	Commencement Bay open water non-dispersive site; and or at permitted beneficial use site(s); and/or at approved upland locations
Sediment ranking	low; low-moderate
Project last dredged	new work

- 2. <u>Background</u>. The Port of Tacoma's Blair Waterway was created incrementally over much of this century. As the waterway was extended, dredged material was used for fill in areas surrounding the waterway up through the 1970s. The waterway has also been dredged repeatedly in the last few years, beginning with the Sitcum Waterway Remediation Project completed in 1995. That project removed both contaminated and clean material from the waterway in a combined CERCLA cleanup and navigation deepening project. Since that time, Port of Tacoma development projects have led to further deepening of the Blair, expansion of the turning basin, and widening of some portions of the waterway. DMMP sampling for projects since the 1995 remediation has shown that all sediments proposed for dredging were suitable for open water disposal, and in 2000, with several rounds of data, the DMMP reduced the overall rank of the waterway to "low."
- 3. <u>Pre-sampling Issues</u>. Prior to any sampling activities, the DMMP responded to four requests from the Port of Tacoma regarding potential sampling and testing of the material to be removed for the PCT project, as summarized below (see Attachment 1 for full response):
 - a. the material to be removed for the PCT expansion could be considered dredged material and thus eligible for open water disposal;
 - b. the low ranking for the Blair Waterway would apply to the PCT project sediments;
 - c. "native" material below fill needed only confirmatory testing (10% of cores), also based on a "reason-to-believe" analysis; and
 - d. a portion of in-water material in the SW corner of the site needed to be characterized with surface grab samples.
- 4. <u>Initial Characterization (Phase I)</u>. Sampling for the initial characterization took place from September 19 22, 2000. Eight DMMU (noted as C1 C8) were sampled with an upland drill rig that took borings (Attachment 2) according to the approved SAP. One DMMU (C9) was characterized with grab samples taken from the water, also as described in the SAP. Out of the 15 upland borings, two penetrated to the full dredging depth; the others penetrated only to the top of the native tideflat layer, as shown schematically in Figure 1. Borings initially randomly chosen for the full dredging depth (S11 and S4) were changed in the field to S5 and S13, due to obstructions in the area that prevented extended occupancy of the initial locations. Samples from all borings taken in a given DMMU were composited for analysis.

Surface (<4 ft.)	- DMMU3 : DMMU2 : DMMU1
Subsurface (≤4 ft.)	: : : : DMMU4 : : : : DMMU5: : : :
Native Layer A (20 ft.)	DMMU 6
Native Layer B (20 ft.)	DMMU 7
Native Layer C (20 ft.)	DMMU 8

Figure 1. Schematic of Phase 1 boring plan, excluding the SW corner grab sampling.

4. Phase I Chemical Analysis. The Agencies' approved sampling and analysis plan was followed, and quality assurance/quality control guidelines specified by PSEP and the PSDDA program were generally complied with. Conventional results are presented in Table 3. Chemical analysis results (Table 4) demonstrated that the "fill"--surface and subsurface composites, C1 through C5--were predominately free of chemicals of concern, with almost no detections of any COCs. Grab samples from the SW corner DMMU (C9) showed a few detections but COCs found were also well below SLs. However, the DMMU representing the top 20 ft. "native" layer (C6) showed high levels of PCBs that exceeded both the SL and BT. C6 also exceeded the SL for total DDT. Other detections of COCs in C6, though higher than in other DMMUs, were still well below SLs. The deeper "native" layers (C7 and C8) showed no detected or non-detected exceedance of DMMP SLs.

Given the high levels of PCBs found in the composite sample from C6, it was clear that the frequency of sampling for this DMMU was not suitable for making regulatory decisions. No biological testing was performed on any of the Phase I sediments pending further sampling and analysis to determine the extent of contamination.

Table 3. Sediment conventional results of Phase 1 characterization.

		S	URFACE		SUBSUI NON-N		SUBSU	SW CORNER GRABS		
j	PARAMETER	C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8	C-9
Vol	ume (cubic yards)	36,090	32,675	42,828	49,035	37,474	624,000	624,000	624,000	4,000
	% Gravel	1.4	10.5	8.0	<0.1	<0.1	0.3	<0.1	<0.1	6.2
Size	% Sand	70.0	73.1	66.2	55.1	65.1	30.0	48.9	71.5	74.0
	% Silt	24.9	13.9	20.4	38.5	29.5	51.2	34.7	24.3	12.0
Grain	% Clay	3.8	2.4	5.4	6.5	5.3	18.4	16.8	4.2	
	% Fines (clay+silt)	28.7	16.3	25.8	45.0	34.8	69.6	51.5	28.5	19.8
	Total Solids, %	89.5	91.5	88.7	76.9	81.5	66.8	75.3	79.8	67.8
	Volatile Solids, %	1.1	1.6	1.7	1.8	1.2	5.1	2.0	1.8	3.6
Total (Organic Carbon, %		0.17	0.15	0.54	0.36	1.2	0.8	0.88	2.5
	al Sulfides, mg/kg		<11	<11	<13	<12	<15	<13	<12	830
1	l Ammonia, mg/kg		3.4	10	24	4.8	65	44	37	6.1

Project Notes:

- Subsurface native was sampled at 10% intensity

- detection limits exceeded SQS in several cases, according to the lab due to low TOC concentrations

Table 4. Chemistry Results for PCT Expansion, Phase I testing.

	DMMP	PROG	RAM	S	URFACI		SUBSUI NON-N		SUE	SW GRABS		
Chemical Parameter	SL (1998)	BT (1998)	ML (1998)	°C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8	C-9
Metals:	mg	/kg dry	weight			- 1						
Antimony	150	150	200	<0.5	<0.5	<0.4	<0.5	<0.5	0.5	<0.5	<0.4	0.3
Arsenic	57	507.1	700	2.8	6.8	2.6	2.6	1.8	22	2.1	2.6	6.9
Cadmium	5.1	N.W.	14	<0.04	<0.04	<0.05	<0.05	<0.05	0.16	0.06	0.09	0.47
Chromium				9.4	9.3	9.5	9.2	8.2	13	10	11	12
Copper	390		1,300	15	27	19	20	14	37	22	23	24
ead	450		1,200	1.9	1.1	2.1	1.0	8.0	13.0	8.0	0.8	6.1
Nercury	0.41	1.5	2.3	<0.011	0.049	0.045	<0.013	0.043	0.09	0.027	0.021	0.032
Nickel	140	370	370	9.5	5.8	9.0	7.8	6.0	24.0	8.8	9.6	0.13
Silver	6.1	6.1	8.4	<0.04	0.14	<0.05	<0.05	<0.05	0.09	<0.05	<0.05 25	54
Zinc	410		3,800	20	15	21	19	17	44	17	25	34
Nonionizable Organic Compounds:	ug/k	g dry we	ight									
Aromatic Hydrocarbons												
Total LPAH	5,200		29,000	0	0	0	0	0	0	0	0	0
Naphthalene	2,100		2,400	<16	<16	<16	<19	<17	<21	<19	<18	<21
Acenaphthylene	560		1,300	<16	<16	<16	<19	<17	<21	<19	<18	<21
Acenaphthene	500		2,000	<16	<16	<16	<19	<17	<21	<19	<18	<21
Fluorene	540		3,600	<16	<16	<16	<19	<17	<21	<19	<18	<21
Phenanthrene	1,500		21,000	<16	<16	<16	<19	<17	<21	<19	<18	<21
Anthracene	960		13,000	<16	<16	<16	<19	<17	<21	<19	<18	<21
2-Methylnaphthalene *	670		1,900	<16	<16	<16	<19	<17	<21	<19	<18	<21
Z-Methythaphthatene Total HPAH	12,000		69,000		0	0	1 0	0	935	43	0	271
	1,700	4,600	30,000		<16	<16	<19	<17	140	<19	<18	63
Fluoranthene -				1	<16	<16	<19	<17	120	<19	<18	47
Pyrene	2,600		16,000	<16	<16	<16	<19	<17	58	<19	<18	40
Benz[a]anthracene	1,300		5,100		<16	<16	<19	<17	290	<19	<18	37
Chrysene	1,400		21,000	<10		+	+		I		-	58
Total benzofluoranthenes	3,200		9,900	<16	<16	<16	<19	<17	167	<19	<18	
Benzo[a]pyrene	1,600	3,600	3,600	<16	<16	<16	<19	<17	51	43	<18	26
Indeno[1,2,3-c,d]pyrene			4,400	<16	<16	<16	<19	<17	50	<19	<18	<21
Dibenzo[a,h]anthracene			1,900	<16	<16	<16	<19	<17	<21	<19	<18	<21
Benzo[g,h,i]perylene	670		3,200	<16	<16	<16	<19	<17	59	<19	<18	<21
Chlorinated Benzenes		g dry w										
1,2-Dichlorobenzene	35	37	110	<2.2	<2.1	<2.3	<3.2	<2.5	<3	<2.5	<2.2	<3
	170	1,241		<2.2	<2.1	<2.3	<3.2	<2.5	<3	<2.5	<2.2	<3
1,3-Dichlorobenzene	110	120	120	<2.2	<2.1	<2.3	<3.2	<2.5	<3	<2.5	<2.2	<3
1,4-Dichlorobenzene		120	64	<1.6	<1.6	<1.6	<1.8	<1.7	<2.1	<1.8	<1.8	<2.1
1,2,4-Trichlorobenzene	31		230	<1.6	<1.6	<1.6		<1.7	<2.1	<1.8	<1.8	<2.1
Hexachlorobenzene	22	168		×1.0	\$1.0	\ \1.0	1		1			
Phthalate Esters	1	kg dry w		1	40	-41	<19	<17	<21	<19	<18	<21
Dimethyl phthalate	1,400		_	<16	<16	<16			<21	<19	<18	<21
Diethyl phthalate	1,200			<16	<16	<16	<19	<17		<19	<18	<21
Di-n-butyl phthalate	5,100	10,220)	<16	<16	<16	<19	<17	<21		<18	<21
Butyl benzyl phthalate	970			<16	<16	<16	<19	<17	<21	<19	+	
Bis[2- ethylhexyl]phthalate Di-n-octyl phthalate	8,300 6,200			32 <16	<16 <16	<16 <16	<19 <19	<17 <17	<21 <21	<19 <19	<18 <18	150 <21

Table 4, continued. Chemistry Results for PCT Expansion, Phase I testing.

	DMMI	P PROC	GRAM	S	URFAC		SUBSU NON-N			SSURFA NATIVE	进行的 经债券 网络	SW GRABS
Chemical Parameter	SL (1998)	BT (1998)	ML (1998)	C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8	C-9
Miscellaneous	ug/k	g dry w	eight									
Dibenzofuran	540		1,700	<16	<16	<16	<19	<17	<21	<19	<18	<21
Hexachlorobutadiene	29	212	270	<1.6	<1.6	<1.6	<1.8	<1.7	<2.1	<1.8	<1.8	<2.1
Hexachloroethane	1,400	10,200	14,000	<16	<16	<16	<19	<17	<21	<19	<18	<21
N-nitrosodiphenylamine	28	130	130	<8	<8	<8	<9	<9	<11	<9	<9	<10
Pesticides/PCBs	ug/k	g dry w	eight									
p,p'-DDE	†	T		<0.63	<0.62	<0.64	<0.72	<0.69	3.8	<0.7	<0.72	<0.83
p,p'-DDD	1			<0.79	<0.77	<0.8	<0.9	<0.86	11	<0.88	<0.89	<1
p,p'-DDT				<1.6	<1.6	<1.6	<1.8	<1.7	3.3	<1.8	<1.8	<2.1
Total DDT	6.9	50.0	69.0	ž.	-	-		-	18.1	10 S.	4	•
Aldrin	10	37		<0.48	<0.46	<0.48	<0.54	<0.52	2.0	<0.53	<0.54	<0.63
alpha-Chlordane	10	37		<1.3	<1.2	<1.3	<1.4	<1.4	<1.7	<1.4	<1.4	<1.7
Dieldrin	10	37		<0.63	<0.62	<0.64	<0.72	<0.69	<0.85	<0.7	<0.72	<0.83
Heptachlor	10	37		<0.48	<0.46	<0.48	<0.54	<0.52	<0.63	<0.53	<0.54	<0.63
gamma-BHC (Lindane)	10	37		<0.48	<0.46	<0.48	<0.54	<0.52	0.97	<0.53	<0.54	<0.63
PCBs												
PCBs (dry wt - ug/kg)	130		3,100	<32	<31	<32	<36	<34	900	<35	<36	<42
PCBs (TOC norm mg/kg)		38							75			
Volatile Organic Compounds:	ug/l	kg dry w	eight									and the second
Trichloroethene	160	1,168	1,600	<2.2	<2.1	<2.3	<3.2	<2.5	<3	<2.5	<2.2	<3
Tetrachloroethene	57	102	210	<2.2	<2.1	<2.3	<3.2	<2.5	<3	<2.5	<2.2	<3
Ethylbenzene	10	27	50	<2.2	<2.1	<2.3	<3.2	<2.5	<3	<2.5	<2.2	<3
Total Xylene	40		160	<2.2	<2.1	<2.3	<3.2	<2.5	<3	<2.5	<2.2	<3
Ionizable Organic Compounds:	ug/	kg dry v	veight		200							
Phenol	420	876	1,200	<16	<16	<16	<19	<17	<21	<19	<18	<21
2-Methylphenol	63		77	<8	<8	<8	<9	<9	<11	<9	<9	<10
4-Methylphenol	670	••	3,600	<16	<16	<16	<19	<17	<21	<19	<18	<21
2,4-Dimethylphenol	29		210	<8	<8	<8	<9	<9	<11	<9	<9	<10
Pentachlorophenol	400	504	690	<64	<62	<62	<74	<70	<85	<76	<71	<84
Benzyl alcohol	57		870	<16	<16	<16	<19	<17	<21	<19	<18	<21
Benzoic acid	650		760	<80	<78	<78	<93	<87	<110	<95	<89	<100

- 2-Methylnaphthalene not summed with other LPAH's (not an SMS COC).
- blue shading indicates that compound was not detected at the given level
- yellow shading indicates SL exceedance
- red shading indicates BT exceedance

- 5. Phase II. A Sampling and Analysis Plan Addendum (SAPA) was submitted to the DMMP agencies on 4 December 2000, and approved on 14 December 2000. Phase II sampling concentrated on the upper eight feet of Phase I DMMU C6, immediately below the fill. Though it varies in elevation, the border between fill and native portions of the prism was easily identifiable in pre-sampling geotechnical borings as well as in both the Phase I and Phase II sampling activities. The entire 8 ft. thick test layer was separated into two 4 ft. thick layers, the "Upper Native" (UN) and "Lower Native" (LN) sections. A testing rank of "low-moderate" was used to determine sampling frequency. The DMMU boundaries and 15 sampling locations from Phase I were superimposed upon these layers, resulting in 6 DMMU of between 7,300 and 8,000 cy each, and designated as UN1, UN2, UN3 and LN1, LN2 and LN3 (Attachment 3). Discrete samples were taken every two feet in each core, with a portion of the sample contributing to a DMMU composite and a portion archived. Discrete samples from the area directly below the 8 foot sampling prism ("X" samples) were also archived. Chemical analysis was performed on composite samples from each DMMU, as well as on discrete samples from S5 and S13, the initial boring areas that contributed to the high PCB detections in Phase I. Because other detected COCs were well below screening levels in Phase I, chemical analysis during Phase II was for PCBs and pesticides only.
- 6. Phase II Chemical Analysis. The Agencies' approved sampling and analysis plan was followed, and quality assurance/quality control guidelines specified by PSEP and the PSDDA program were generally complied with. PCB and pesticide exceedances were again found in areas where there were previously found during Phase I (Table 5). No exceedances at all were seen in LN1, LN2 and UN2. UN1, UN3 and LN3 all exceeded the PCB SL, and LN3 exceeded the PCB BT. Three out of four discrete samples from these DMMU also exceeded DDT screening levels and one sample exceeded the PCB BT level. Based on these results, bioassays proceeded on composite samples from UN1, UN3 and LN3.
- 7. Phase II Bioassays. Bioassays were performed only in Phase II. The standard suite of three bioassay tests (amphipod toxicity, larval mortality/abnormality, and Neanthes growth) was performed on composite samples from UN1, UN3 and LN3.

Performance standards and interpretation guidelines specified for the DMMP program were used to evaluate the bioassay data collected (Table 6). Two reference sediments were collected from the West Beach of Whidbey Island, one designated "low fines" (53% combined silt and clay) and one designated "high fines" (87% combined silt and clay).

Control and reference sediments were within DMMP performance criteria for the amphipod (*Eohaustorius estuarius*) and the *Neanthes* bioassays. However, the "low fines" reference sediment (for comparison with LN3) did not meet performance criteria for the larval (*Mytilus edulis*) test (Table 7). Mortality of the *Mytilus* larvae in this reference sediment was too high for appropriate comparisons, and thus the data could not be used for decision-making for LN3 for these tests.

All three test sediments passed non-dispersive site disposal guidelines for the amphipod and *Neanthes* bioassays. However, mortality in the sediment larval test was high enough to fail both UN1 and UN3 test sediments under the one-hit rule. Similar mortality in the LN3 sediment larval test indicated that, should the reference sediment have met performance standards, this DMMU would also have failed under the one-hit rule.

Based on these bioassay ults, none of the sediment in UN1, UN2 or LN3 would be suitable for open-water disposal at a non-dispersive site. The project moved on to Phase III while bioassay results underwent a QA/QC review.

During the QA/QC review, it was discovered that all larval tests had very high levels of unionized ammonia (NH₃) and, contrary to cited protocols, were not aerated during the test period. PSEP protocols for the *Mytilus* bioassay specify that data should be qualified as potential false positives when unionized ammonia levels exceed 0.13 mg/L unionized ammonia (PSEP 1995). Initial levels of unionized ammonia for all three test sediments exceeded that level (range 0.28 to 0.40 mg/L NH₃), and all increased over the course of the test (range 0.74 to 1.15 mg/L NH₃). Based on this evidence, larval tests were considered potential false positives and not considered valid. Without valid bioassay results needed for decision-making, the sediments represented by UN1, UN3 and LN3 were still considered unsuitable for open-water disposal.

Table 5. Summary of Phase II Conventional and Chemical Analyses.

											D	iscrete	Sample	es
	·	DMN	NP PROG	RAM		Co	mposit	e Samp	les		from	UN-1	from	UN-3
		SL (1998)	BT (1998)	ML (1998)	UN-1	LN-1	UN-2	LN-2	UN-3	LN-3	5A-1	5A-2	13A-1	13A-2
٧	olume (cy)				38,477	38,477	30,620	30,620	46,313	46,313	na	na	na	na
Ca	nventionals													
	% Gravel	P 22 3 7 4 (3 C C C C C C C C C C C C C C C C C C			0.8				0.1	0.3				
o	% Sand		-		20.8				5.8	45.7				
Siz	% Silt				69.5				75.7	42.7				
Grain Size	% Clay				9.0				18.3	11.4				
Ō	% Fines (clay+silt)				78.5				94.0	54.1				
Tot	tal Solids,%			THE PERSON NAMED IN COLUMN TWO	70.4	68.5	64.8	68.8	65.1	68.6	63.4	63.4	69.6	63.6
	TOC, %				0.73				2.5	1.2	2.7	2.0	0.83	1.80
	Pesticides	u	g/kg dry	weight										
	p,p'-DDE				<0.8	<0.83	<0.88	<0.83	6.0	<8.3	4.6	<1.8	<0.81	4.6
	p,p'-DDD				1.4	1.2	<1.1	<1	17	26	19	4.4	<1	14
	p,p'-DDT				<2	<2.1	<2.2	<2.1	3.9	<21	<4.4	10	<2	<2.2
	Total DDT	6.9	50.0	69.0	1.4	1.2	<2.2	<2.1	26.9	26.0	23.6	14.4	<2	14
	Aldrin	10	37		0.66	0.62	<0.66	<0.62	1.9	5.6	<1.3	<1.3	0.87	1.4
alp	ha-Chlordane	10	37		<1.6	<1.7	<1.8	<1.7	5.6	14	<3.6	2.9	<1.6	5.7
	Dieldrin	10	37		<0.8	<0.83	<0.88	<0.83	<1.7	9.5	<1.8	2.0	<0.81	<0.88
	Heptachlor	10	37	**	<0.6	<0.62	<0.66	<0.62	<1.3	<6.2	<1.3	<1.3	0.65	0.66
	gamma-BHC (Lindane)	10	37		<0.6	<0.62	<0.66	<0.62	<1.3	<6.2	<1.3	<1.3	<0.61	<0.66
	PCBs													
	CBs (dry wt - ug/kg)	130		3,100	154	<42	<44	<41	920	2040	1040	440	<40	670
	PCBs (TOC orm mg/kg)		38		21.1	-	-	-	36.8	170.0	38.5	22.0	-	37.2

- Conventionals were only run for those samples that underwent biological testing
- blue shading indicates that compound was not detected at the given level
- yellow shading indicates SL exceedance
- red shading indicates BT exceedance

Table 6. Summary of Phase II Bioassay Results.

		Amph	nipod	Sed. L	.arval	20-d	ay Nean	thes Gr	owth	
STATION	% fines	E. est Mortal	uarius ity (%)	M. e. NCM		Survival (%)	Grov (mg/ind 0.5 mg wei	d/day) initial	Growth % of ref.	DMMP
		mean	sd	mean	sd		mean sd			
Control (West Beach)	0	5	8.7	0.0	18.5	95	0.81	0.05		
Low fines Reference	53	22	18.9	44.4	12.7	84	0.91	0.21		
	54	13	9.1	91.5	26.8	92	. 0.70	0.18	77%	invalid data
High fines Reference	87	12	9.1	31.3	15.7	92	0.70	0.18		
UNI	79	17	7.6	91.1	37.5	88	0.61	0.13	87%	fail
LIN3	94	24	14.3	71.5	23.8	100	0.69	0.18	98%	fail
Reference to	xicant	Cadmium chloride		Copper	sulfate		Cadmium		le	
96 hr LC	50	9.5 m	g/L Cd	7.5 m	ig/L Cu		9.2 m	g/L Cd		

Table 7. Phase II Bioassay Performance Standards.

BIOASSAY	TEST SEDIMENT	NEGATIVE CONTROL PERFORMANCE	REFERENCE SEDIMENT PERFORMANCE	NONDISPERSIVE DISPOSA SITE INTERPRETATION GUIDELINES				
		STANDARD	STANDARD	1-hit rule	2-hit rule			
	UN1 (high fines)		7% ≤ 20% (mortality	5235	0288			
Amphipod	UN3 (high fires)	5% <u><</u> 10% (mortality)	difference from control)	pass	pass			
	LN3 (low fines)		1 7 % ≤ 20%	pass	pass			
	UN1 (high fines)		69% > 65% (normal surviving	fail /invalid test*	fail/invalid test*			
Sediment	UN3 (high fines)	100% > 70% (normal surviving	larvae; % of control)	fail/invalid test*	fail/invalid test*			
Larval	LN3 (low fines)	larvae)	56% ≥ 65%	test does perforr standards/ii	nance			
	UN1 (high fines)	5% < 10%	12% < 20% (mortality)	pass	pass			
Neanthes growth		(mortality) and 0.81 > 0.38	1.13 ≥ 0.80 (growth rate, % of control)	pass	pass			
	LNE How fines	(mean ind. growth rate)	16% ≤ 20% 0.87 ≥ 0.80	pass	pass			

- Numbers in **bold** are performance standards
- Numbers in red fail performance standards.
- False positives may have occurred during the larval bioassay due to high concentrations of unionized ammonia during the test period as discussed in Section 7.

- Phase III Archive Analysis. Phase I and Phase II analyses both showed patchy PCBs that appeared to be concentrated in a portion of the dredge prism. Though Phase II somewhat narrowed down the spatial extent of contamination horizontally, it was still not clear whether the Phase II sampling--to eight feet into the native layer--had found the vertical extent of the contamination. Because of indeterminate bioassay results, the DMMP agencies, with the Port of Tacoma, decided to analyze archived discrete samples, again for pesticides and PCBs, in an attempt to further clarify both the horizontal and vertical extents of the contamination. These discrete samples were from every two feet of each core, as described in Section 5. The Port of Tacoma agreed to consider any areas with SL exceedances of PCBs or pesticides unsuitable for open water disposal. Because they likely did not contribute to the exceedances and potential bioassay failures seen in the Phase II composites, DMMP agencies agreed to consider those sub-areas with no PCB or pesticide exceedances suitable for open water disposal. The final limits of suitable and unsuitable DMMUs were drawn conservatively to account for uncertainty in the sampling process and to ensure that all contaminated material was removed for appropriate disposal.
- 9. Phase III Chemical Analysis. Nine out of 34 samples exceeded total DDT and/or PCB SLs (Tables 8-10), and the areas they represent are considered unsuitable for open-water disposal. All of the contaminated sub-samples were in the top six feet of the 8-foot prism tested in Phases II and III, so further analysis of the "X" samples was not considered necessary.

Table 8. Summary of Phase II Archive Analysis, UN-1

	DM	MP PRO	GRAM					UN	-1				
	SL (1998)	BT (1998)	ML (1998)	1A-1	1A-2	2A-1	2A-2	3A-1	3A-2	4A-1	4A-2	5A-1*	5A-2*
Approx. Volume (cy) (see section 11)				3,800	3,800	3,800	3,800	3,900	3,900	3,900	3,900	3,900	3,900
Conventionals						500		emany services and					
Total Solids, %				62.3	64.3	71.4	91.2	70.3	75.8	93.0	69.2	63.4	63.4
Total Organic Carbon, %				1.9	1.6	0.81	0.68	0.55	0.63	0.27	0.81	2.7	2.0
Pesticides	ug/k	g dry we	eight										
p,p'-DDE				<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.8	<1.9	4.6	<1.8
p,p'-DDD				<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.8	<1.9	19	4.4
p,p'-DDT		*-		<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.8	<1.9	<4.4	10
Total DDT	6.9	50.0	69.0	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.8	<1.9	23.6	14.4
Aldrin	10	37		<0.93	<0.94	<0.94	<0.96	<0.97	<0.93	<0.92	<0.94	<1.3	<1.3
alpha-Chlordane	10	37		<0.93	<0.94	<0.94	<0.96	<0.97	<0.93	<0.92	<0.94	<3.6	2.9
Dieldrin	10	37		<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.8	<1.9	<1.8	2.0
Heptachlor	10	37		<0.93	<0.94	<0.94	<0.96	<0.97	<0.93	<0.92	<0.94	<1.3	<1.3
gamma-BHC (Lindane)	10	37		<0.93	<0.94	<0.94	<0.96	<0.97	<0.93	<0.92	<0.94	<1.3	<1.3
PCBs				1									
PCBs (dry wt - ug/kg)	130		3,100	<37	<37	<38	<38	<39	<37	<37	<38	1040	440
PCBs (TOC norm mg/kg)		38		-		-	-	-	-	-			22.0

- *starred subunits analyzed during Phase II by AmTest; remainder of subunits analyzed by ARI during Phase III
- blue shading indicates that compound was not detected at the given level
- yellow shading indicates SL exceedance
- red shading indicates BT exceedance

Table 9. Summary of Phase II Archive Analysis, UN-3

	DM	MP PRO	GRAM						۱U	1 -3					
	SL (1998)	BT (1998)	ML (1998)	10A-1	10A-2	11A-1	11A-2	12A-1	12A-2	13A-1 *	13A-2 *	14A-1	14A-2	15A-1	15A-2
Approx. Volume (cy) (see section 11)	ARCHIO MORNING CONTRACT	aronskus patutokokokokok	enecessis and a second	3,800	3,800	3,900	3,900	3,800	3,800	3,900	3,900	3,900	3,900	3,900	3,900
Conventionals															
Total Solids,%				66.4	94.4	69.2	61.6	68.3	77.5	69.6	63.6	66.8	66.3	66.2	
TOC, %				1.90	0.16	1.2	1.7	1.5	2.3	0.83	1.80	1.5	1.1	1.3	1.60
Pesticides	ug/kg d	ry weigh	it												
p,p'-DDE				7.6	<1.9	<1.9	<1.9	<1.9	<8.1	<0.81	4.6	<2.0	<2.0	<2.0	4.8
p,p'-DDD	-			18	<1.9	<1.9	<1.9	<1.9	9.0	<1	14	<2.0	<2.0	<2.0	12
p,p'-DDT			4-	<2.9	<1.9	<1.9	<1.9	<1.9	<2.4	<2	<2.2	<2.0	<2.0	<2.0	<3.9
Total DDT	6.9	50.0	69.0	25.6	<1.9	<1.9	<1.9	<1.9	9	<2	14	<2.0	<2.0	<2.0	16.8
Aldrin	10	37		2.5	<0.94	<0.95	<0.97	<0.96	<1.0	0.87	1.4	<0.99	<0.99	<0.99	<0.97
alpha-Chlordane	10	37		<0.95	<0.94	<0.95	<0.97	<0.96	<0.94	<1.6	5.7	<0.99	<0.99	<0.99	<0.97
Dieldrin	10	37		4.9	<1.9	<1.9	<1.9	<1.9	<5.7	<0.81	<0.88	<2.0	<2.0	<2.0	<3.2
Heptachlor	10	37		<1.4	<0.94	<0.95	<0.97	<0.96	<1.0	0.65	0.66	<0.99	<0.99	<0.99	<0.97
gamma-BHC (Lindane)	10	37		<1.8	<0.94	<0.95	<0.97	<0.96	<0.61	<0.61	<0.66	<0.99	<0.99	<0.99	<2.9
PCBs															
PCBs (dry wt - ug/kg)	130)	3,100	260	<38	<38	50	<38	240	<40	670	<39	<40	<40	150
PCBs (TOC norm mg/kg)		38		13.7			2.9		10.4		37.2				9.4

Table 10. Summary of Phase II Archive Analysis, LN-3

	DM	MP PRO	GRAM						LN	I-3					
	SL (1998)	BT (1998)	ML (1998)	10A-3	10A-4	11A-3	11A-4	12A-3	12A-4	13A-3	13A-4	14A-3	14A-4	15A-3	15A-4
Approx. Volume (cy) (see section 11)				3,800	3,800	3,900	3,900	3,800	3,800	3,900	3,900	3,900	3,900	3,900	3,900
Conventionals															
Total Solids,%				75.4	81.5	74.9	91.7	74.6	69.2		75.7	60.7	90.9	75.3	90.1
TOC, %				0.27	0.97	0.22	0.14	3.8	0.41	2.6	0.17	<u> </u>	0.36	0.14	0.46
Pesticides	ug/k	g dry w	eight							dilute d		dilute d			
p,p'-DDE				<1.9	<1.9	<1.9	<1.9	<4.3	<1.9	<13	<1.9	<18	<2.0	<2.0	<2.0
p,p'-DDD				<1.9	<1.9	<1.9	<1.9	5.5	<1.9	41	<1.9	55	<2.0	<2.0	<2.0
p,p'-DDT				<1.9	<1.9	<1.9	<1.9	<2.0	<1.9	<7.9	<1.9	<12	<2.0	<2.0	<2.0
Total DDT	6.9	50.0	69.0	<1.9	<1.9	<1.9	<1.9	5.5	<1.9	41	<1.9	55	<2.0	<2.0	<2.0
Aldrin	10	37		<0.97	<0.96	<0.96	<0.94	<0.98	<0.95	<3.5	<0.97	4.1	<0.98	<0.98	<0.99
alpha-Chlordane	10	37		<0.97	<0.96	<0.96	<0.94	<0.98	<0.95	2.6	<0.97	<2.5	<0.98	<0.98	<0.99
Dieldrin	10	37	**	<1.9	<1.9	<1.9	<1.9	<3.7	<1.9	18	<1.9	<19	<2.0	<2.0	<2.0
Heptachlor	10	37		<0.97	<0.96	<0.96	<0.94	<0.98	<0.95	<4.8	<0.97	<0.98	<0.98	<0.98	<0.99
gamma-BHC (Lindane)	10	37		<0.97	<0.96	<0.96	<0.94	<1.8	<0.95	<11	<0.97	<9.6	<0.98	<0.98	<0.99
PCBs															
PCBs (dry wt - ug/kg)	130		3,100	<39	<38	<38	<37	170	25	750	<39	950	<39	<39	<40
PCBs (TOC norm mg/kg)		38					•	4.5	6.1	28.8		31.7	<u></u>		

- 10. <u>DMMU Borders and Buffers</u>. Subunits considered unsuitable for open water disposal are 5A-1, 5A-2, 10A-1, 12A-2, 12A-3, 13A-2, 13A-3, 14A-3, and 15A-2. All subunit areas were initially defined as roughly equivalent volumes of the original DMMU. But because these subunit areas were not defined as part of the original sampling plan, and because sampling intensity did not anticipate smaller DMMUs, buffer zones around unsuitable subunits were established as follows:
 - Horizontal boundaries between suitable and unsuitable DMMU subunits were located 3/4 of the distance from a sampling point (boring) where unsuitable material was identified and the adjacent sampling point where suitable material was identified.
 - An additional one foot of vertical buffer overlying and underlying unsuitable material will be removed with the unsuitable material.

Based on the DMMU borders and buffer zones defined above, approximately 69,593 cy of the 2.1 million cy anticipated to be dredged during this project were found unsuitable for open water disposal.

- 11. <u>Comparison to SMS Guidelines.</u> All results of the chemical analyses were organic carbon normalized, if necessary, and compared to Washington State Sediment Management Standards. Except for PCBs, all detected chemicals were well below Sediment Quality Standards (SQS). (There are no defined SQS levels for pesticides). All PCBs over the SMS level of 12 ppm TOC normalized are included in the sub-areas not suitable for openwater disposal. Thus, all project sediment suitable for open water disposal is below SMS criteria for all contaminants and is also suitable for beneficial uses.
- 12. <u>Suitability</u>. This memo documents the suitability of proposed dredged sediments for the Pierce County Terminal expansion in the Blair Waterway for open water disposal. The data gathered were deemed sufficient and acceptable for regulatory decision-making under the DMMP program. Based on the results of the previously described testing, the DMMP agencies concluded that 2,004,509 cubic yards are suitable for open water disposal. Suitable areas include Phase I DMMUs C1, C2, C3, C4, C5, C7, C8 and C9; Phase II DMMUs LN1, UN2 and LN2; and Phase III subunits 1A-1, 1A-2, 2A-1, 2A-2, 3A-1, 3A-2, 4A-1, 4A-2, 10A-2, 10A-3, 10A-4, 11A-1, 11A-2, 11A-3, 11A-4, 12A-1, 12A-4, 13A-1, 13A-4, 14A-1, 14A-2, 14A-4, 15A-1, 15A-3 and 15A-4. Open water disposal may be at the Commencement Bay non-dispersive site or at an approved beneficial use site.

A total of **69,593** cubic yards are not suitable for open water disposal and must be disposed at an approved upland or confined site. Not suitable units are those subareas defined in Phase III: 5A-1, 5A-2, 10A-1, 12A-2, 12A-3, 13A-2, 13A-3, 14A-3, and 15A-2, along with associated buffer areas as described in Section 10.

It should be noted that the Port of Tacoma may propose to resample and retest portions of the dredge prism due to the potential occurrence of false positives during the larval bioassays. New bioassays would not supersede the need for bioaccumulation testing for those composites that exceeded the BT. All resampling/retesting would be conducted under a DMMO-approved SAPA. This suitability decision would be amended as appropriate based on the results of the retesting, if conducted.

A Dredging and Disposal plan for this project must be completed as part of the final project approval process. For this project, the contract plans and specifications will need to provide strict surveying control and documentation procedures to limit the potential for unsuitable material to be inadvertently disposed at the DMMP site. The project Dredging and Disposal Plan shall describe these procedures in detail, and all procedures will be subject to review and approval by the DMMO prior to commencement of dredging. The Dredging and Disposal plan shall be provided to all DMMP agency representatives at least two weeks prior to the pre-dredge meeting.

The Port must verify that all approved control procedures are used during dredging operations. The Port shall provide documentation that all unsuitable material was effectively segregated from suitable material and disposed at appropriate locations. Disposal locations for unsuitable material shall also be documented, along with the volume of material disposed at each location.

This suitability determination does not constitute final agency approval of the project. A final decision on project approval will be made after full consideration of agency input, and after an alternatives analysis is done under Section 404(b)(1) of the Clean Water Act.

13. References.

AmTest 2000. Laboratory data and cover letter to GeoEngineers, dated October 20, 2000.

GeoEngineers 2001. Dredge material characterization, Pierce County Terminal expansion project, Tacoma, Washington. Report to the Port of Tacoma, File No. 0454-054-05-3150/050701.

PSEP 1995. Puget Sound Estuarine Protocols: Recommended guidelines for conducting laboratory bioassays on Puget Sound sediments. Prepared for US EPA and PSWQA, revised July 1995.

Concur:

7/13/01

Lauran Cole Warner, Seattle District Corps of Engineers

8/9/01 Date

Justine Barton, Environmental Protection Agency

7/12/0/ Date

Rick Vining, Washington Department of Ecology

Date Date

Robert Brenner, Washington Department of Natural Resources

Copies furnished:

Rick Vining, Ecology
Justine Barton, EPA
Robert Brenner, DNR
Jack Gossett, Corps
Sally Fisher, GeoEngineers
Dick Gilmur, Port of Tacoma
DMMO file
Bill Sulvivan, Puyallup Tribe
Glen St. Amant, Muckle shoot Tribe